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Abstract 

We describe a method and a way of thinking which is ideally suited for the study of systems 

represented by canonical integrators. Starting with the continuous description provided by the 

Hamiltonian, we replace it by a succession of preferably canonical maps. The power series represen

tation of these maps can be extracted with a computer implementation of the tools of Non-Standard 

Analysis and analyzed by the same tools. For a nearly integrable system, we can define a Floquet ring 

in a way consistent with our needs. Using the finite time maps, the Floquet ring is defined only at the 

.locations s, where one perturbs or observes the phase space. At most the total number of locations 

is equal to the total number of steps of our integrator. We can also produce pseud.,.Harniltonians 

which describe the motion induced by these maps. 

Presented at the XVIIQ International Colloquium on Group Theoritical Methods in Physics in 
the aeetion on nonlinear dynamics held at Ste-Adele, Quebec,Cauaa'it. 
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1_ Introduction. The eqnaUpn: of motion 

Th .. work preoented h .... is motivated by the study of single particle motion in a complex circular 

storag .. ring. If we- denote by s(O < • < 1). the position around thia ring. we can defined a map 

9(.;. + 1) which describes completely our system. The map 9(8;' + 1) propagates any function of 

phase space I belonging to the oet V of analytic functioDl into ita new form af\er one iteration (or 

one turn). It is well known that the map 9 preserves the Poisson bracket. It io a symplectic map: 

I E V L 91 E V; 9 E End(V) (1.1a) 

x E lR.'N L I(x) E lR. (1.1b) 

(1.1e) 

where q are the positioDl and p the momenta. We choose canonical variables which obey the famous 

Poisson bracket condition 

[q,.P;] = 6,;. (1.1d) 

As we just said, the Poisson bracket is preserved by 9: 

(f,g) E V' W[J.g] E V, (1.2a) 

9[J, g] = [91,9g]. (1.2b) 

Furthermore, we aasurne that our starting point is a Hamiltonian H(t) describing the motion 

between t and t + dt: 
d ' 
d/(x)lx=x(.) = [-H(t)./(x)]Ix=x(.) · (1.3) 

We can derive a differential equation for the map 9(8;S+t) in terms of the Lie operator : -H(t): 

asaociated with H(t)[1. 2j: 

~ 
dt9(.;.+t) = 9(';I+t) : -H(t):. (1.4a) 

I 
9(.;.) ' = & ; & = !dentitl/. cut) 

:/:g = [J.g]; :/:E End{V}. 

The ' fundamen&8l'~roblem of particle optics -in a periodic ' syatem is the unaerata.nding or tho 

'dtect orrepeatedi~oD of a: ID other word.. we would like to und~ci the ,map 9(.;.+11) ' = 
!l{ r, • + 1)" aa the integer .. geta larger and1ar .... 



The- goal or this paper- is to preaen" a n"", powerful ae" or techniqu .. which alIo,", ua to perfor= 

lOme otandard· nonna1j .. tioDo nau£onnationao,", the ID&pog(.; • + 1,. wiUlout compromisin~ OD· the

actual.comp1exity or the- original Hamiltonian H(t). To pu" tJU.in penpecQ~, __ will fIrat· deacriM 

the-usual. way th ...... tudi ... ~done- by acceI .... tor physic:iaW. 
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2. Conventional Approach for the Study of g(.;. + 1) 

A) Ray Tracing. 

The simplest way to include all the information contain in H(t) is to integrate Eq.(1.3) for the 

2N projection functions II; defined as follow.: 

IR 2N 2!!. 1R; II; E V, (2.1a) 

II;(x) = Z; . (2.1b) 

Of course, only a finite set of initial conditions can be traced and therefore it is hard to extract a 

lot of information from ray tracing. In tbis brute force approach, the simulation can be done with a 

Hamiltonian H(t) wbich can have all the pieces simulating field errors, position errors or any other 

messy effects. Traditionally and accidentally, accelerator physicists have used low order explicit 
symplectic (or canonical) integrators to simulate their complex machines. 

What if analytical results are needed? How do they proceed? The answer is simple: they go 

back to the Hamiltonian H(t). We briefly describe this approach is the next paragraph. 

B) Normalization of H(t). 

During a normal form process, one attempts to transform the Ha.miltonian H(t) into a "simpler" 

Ha.miltonian K(t) by a periodic canonical transformation A(t). This process requires the knowledge 

of A(t) for all t 's. For example, let us suppose that we have the following relations: 

z = A(t)-Ix= exp(: -w(x;t) :)x, (2.2a) 

z = new variable.! . (2.2b) 

Then the new Ha.miltonian is given by a relation first derived by Cary (1978) [3]: 

K(t) = A(t) ( H(t) + iexp(: -wet) :) a;) , (2.3a) 

iexp(A) = (exp(A) - 1) . 
A 

(2.36) 

Corresponding to K(t), a map N(t) can be derived and it obey. Eq.(1.4). In fact, using the definitiOll 

of A and remembering that our maps tranosform Cunctions· oC phaae space, we gee 

N(.;.+ 1) = A(.) g(.;.+ 1) A(.)-l . (2.4) 

If the sy.tern under study is oC sufficient complexity, the direct computation oC K(t) and A(t} 
.,: . is no' Ceaaible withouCapproximating H(t). Hence a Birkhoff (or Deprit) t):pe normalization of ciM 

·;yri!{'".>t~"i ' ·':·map described by H(l) is rarely done in a way conaiste~t with the results of the integrator used ;. . ,. 
tracing ray" in phaae space. 

• 



C) Condlialomo .. OlclMethodoo. 

Perturbation, theory 011: the Hamiltonian ia D," feuible on complex systems. In addition, sin .... 

........ int.ereated in, the- behavior of g(.; .+ 1) at a finite Dumber OflocatiODU, the complete IOlution 
required by Eq.(2.7) containo a lot of noel ... information even when obtained. 

Wh~ can be- done- to maintain the generality of the integrator and at the- same time- perform 
normaliution algorithml on the very model used by the integrator without further approximatioDl? 
Thil we- will anower in the next sectioDl. 
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3. A.Ne ... Approach for the.study of g(.;. +1) 

What we have done and will now describe is to adapt old methods and develop new on .. in 

order to match exactly the hard and eaoy .. peds of the system. we intend to study. The tools that 

will be- invoked in this section are not neceosarily more complicated than the old tools. but they are 

more suited to the study of complex periodic systems. 

We list the important concepts in our approach in the chronological order in wbich tbey appear 

in a calculation. 

i) An explicit integrator must be written to described tbe system. Whenever possible. we prefer 

to use an explicit canonical integrator. integrators of tbis type bave been derived for Lie 

groups for up to fourtb order in the time step. Witbout furtber approximations. rays can 

now be traced . 

ii) The following is true for any symplectic map and in particular for the one turn map g. given 

any function I E V: 

(g(.;. + l)f)(x) = I(z) (3 .1a) 

Z(8) = (ZI (.) •.. .• Z2N(S» = ((g(.; s + l)ll')(x) •...• (g(s;. + l)ll.N )(x)). (3.H) 

we need only to compute the 2N functions .. (x) to know the action of tbe full map g on 

any function belonging to V. Property (3.1) can be- viewed as a consequence of Hamilton's 

equations Eq.(1.3) or a consequence of the differential character of Lie operators (tbey obey 

Leibnitz rule: : I : (gh) = (: I : g)h + g(: I : h) ). 

Furthermore, since our goal is to perform a perturbative calculation ordered by tbe degrees 

in the power series expansion of H around a periodic orbit ZO(s) (ZO(s + 1) = zO(s», we will 

need to obtain tbe power series of tbe 2N functions z, to a predetermined order No around 

the periodic orbit. 

This particular calculation can be done with the new software implementation of the powerful 

tools of Differential Algebra which itself is an application of Non-Standard Analysis. Essen

tially, we create a new field 1l which is an extension of JR. An analytic function over tbe 

field JR is known completely if it is known for one single point of the field 1l (super-Cauchy 

theorem!). Hence our integrator is instructed to compute the projection functions II, by fol
lowing the periodic orbit zoe s) in that super-field. in practice (and in FORl'RAN! [5]), one 

·has augmented the integrator introduced in item i) with a map extraction a1,orithm whidl 

will provide a power seri .. expansion ofthe functions .. (.) around any orbit and in particUlar 

around a periodic orbit. These tools are limited in the order No and in the number o£depes 

or freedom 2N by the power of our computers oOly. The coefficients of the resuItin« ~ 
series are exactly computed for (and by) our integrator and are therefore very accurate "" 

compared to thee. obtained by numerical differentiation. IiI fact the only IOUrce of .... naca

faci .. in the computatioii of these coefficients is ;;, the cumulative truncation error produ"" 

by a iarge number of operatio ..... 

, " - ."._._ .... .......... .. . -, . __ ...... ---- . ' "'--'"-'". 



To sum UP'" we have chea~d the gigantic size of our task twice: firstly we noticed that the 

action of the infinite dimensional Lie group of C1aaoical Dynamics can he studied by ita. 

action on the projection functiona II; and secondly we eonatructed a super-field in which 

these functiona need to be evaluated on one element only. 
, 

In addition, once a particular ordering of the Lie operators [4Jhas been chooen to represent a 

symplectic map then the following statements are true: 

Ideally two different elementa of the super-field 'R. representing symplectic maps will lead 

to different symplectic maps. In practice two seta of symplectic functiona II; lead to the 

same Lie representation if their power series are identical to the highest order considered 

(i.e.N. ). Hence the functions II; belong to an equivalence C\""" which is independent of the 

reconstruction process. For a. non-canonical integrator I this is not true. For each process 

there exista a infinite number of non-symplectic functions leading to the same Lie operators. 

Hopefully the process is chooen so as to introduce an error which is not greater than the 

violation of the symplectic condition in the integrator. 

iii) The production of the map and the analysis of the one period map are now independent 

procedures. The analysis and normalization of this map are best achieved by computing from 

the functions ZitS) the Lie generators of the original map 9(.; . + 1). This is not surprising 

since the process leading from H(t) to K(t) was perform on these Hamiltonians which are 

just the infinitesimal generators of 9 and J{ as indicated by Eq.(1.4) . This process can also 

be handled by the software tools in the Differential Algebra package. 

iv) Finally, if 9(.; 8 + 1) represents a quasi-integrable system, which we want to perturb at a few 

&elected locations by a very nonlinear force, we can set up a Hamiltonian-Free context for 
that study. More precisely, we can derive a infinite number of pseude>-Hamiltonians which 

describe the quasi-integrable system between the locations of the additional nonlinear force. 

In sections 4,5,6 and 7 we will describe in a moderate amount of details the four items on this 

list which allow us to integrate complex systems and properly analyse them. 

'1 



4... Canonical Integration in ~he Symplectic Group 

A) Explicit Integration in a Lie Group 

We will now describe a very ideal situation which occurs meet of the time in. the study of 

medium to large periodic systems. In th""" systems, for reasons outside the range of thie paper, the 

Hamiltonian H(t) and its Lie operators can be broken in two terma which are exactly solvable in 

terma of simple functions: 

H(t) = HI(t) + H.(t). (4.10) 

: -H(t): = : -HI (I) : + : -H,(t) : . (4.1b) 

In other words, we have an explicit repr....ntation for the action of M . on the coordinate projection 

functions n •. Of courae, M.(t) is a solution of Eq.(1.4a): 

d 
dtM.(s;s+t) = M'(8;s+t) : -H.(I) :, (4.2) 

How to combine the two solvable maps M. over a time step III and approximate the full map 

g(s; s+IlI) is the fundamental question behind "two-map" explicit symplectic integrators. Needless 

to say that the problem stated here can be generalized to any Lie group by simply stating that the 

three operators: -H :, : -HI : and ,: -H. : belong to the Lie Algebra of the group under study. 

Firat, it is often poesible to get rid of the t-dependence by a temporary extension of phaae space: 

: -h : = : -HI(t) - Pt : + : -H.(t) - p, : + : p, :, (4.30) 

=: -hi : + : -h. : + : p, : . (4 .3b) 

The new "time-like" variable r is related to I by the relation: 

<it {Jil 
dr = {Jp, = l;henee => r = I. (4.4) 

Using the r-indepenee of : -h :, we can immediately write an exact formal solution for the 

maps g(s; s + Ill) and M.(.; . + ~ 

(4.5~ 

M.(.; s + Ilt) := exp( -Ill : II; :) . (4.5b) 
, -.~ 

,.:;/.~V· ,J,:!\: . . , W';'w 'O!e syDibol := to indicate that the mapeare not really equal sinee the original one acta 

on functions of only 2N variables while the new map acts on the extended phaae space of 2N+2 
" " 
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variabl-. Makini;".... of the Cunpbell-BaJw..Hauadorff formula .... d of Eq •. ( 4.5a) .... d (4.5b), _ 

eaDlderiw-foUE appmrimatj<lllllof g(.;. +~): 

exp(-~: h:) =exp(-~: hI :)exp(-t.t: h, :)exp(t.t: Pt :) + ... order(t.t'), 

t.t t.t 
exp(-t.t : h, :)exp(T : Po :) exp(-T : hI :) + ... order(t.t3

), 

t.t t.t 
g(.; . + t.t) = MI(s; S + T)M,(8;. + t.t)MI(' + T; S + t.t) + ... order(t.t3

); (4.6) 

A fourth order integrator can alao be derived, however due to its lengthy expression, we give only 

the time independent reault [6]: 

g(t.t) = M I(.dM,(dl )MI(S2)M,(d,)MI(s,)M,(dl )MI(sd + ... order(t.t6
); (4 .7a) 

1 
81 = 2(2_P)t.t, (4.76) 

(1 - {J) 
'2 = 2(2 _ P) t.t, (4.7e) 

1 
d l = 2 _ pt.t, (4.7d) 

-p 
d,= 2_Pt.t , (4 .7.) 

B) Implicit Integration in a Lie Group 

For the symplectic group it is pOllllible to write .... implicit symplectic integration acheme using 

a characteristic function. This worb all the time even when the Hamiltoni .... H(t) precludes the 

existence of .... explicit solution. For example, we can reproduce the effect of 11(.;. + t.t) 0\1 CIae 
projection functions II; to first order in t.t by tracking wring the characteristic functioa! 

In g""eral Fl is a IOlutioa of the Hamilton-Jacobi equation ['l1: 

lJFl . ( " '". ) der( .+~) .1Ie +H q, as;t =O+ ... or H . , 

(4.8) 

(0) 
" • . 1 .• : • 

,i.:;" .J " . The.;;.p extraction wr.n~:ae.cribed in the neXt aection ..... till applicable to a characta-

istie function integrator. F"ust, eme computes the central trajectory by IOlving the implicit eet at 

.. 
". 

. '. 
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equat.ioll& produ~ by Fl and th_ Fl is expanded around this. trajectorr and tho' renl~ power 
"";.,.ja'pamally inverled uiDS the thO'DiIr ...... uaL Algeb...,tooJ.of -U01l' 5~ 

C) C<>ncluaioD> 

We have seen hoW' one· produca simple symplectic" intesrators of the explicit and implicit kind. 

Furthermore, if only a map is needed for analysia or traclring, it can be obtained from a non-canonical 

intesrator. The resulting power aeries can be "symplectified" by a procedure which extracts & 

characteristic function or a Lie operator representation of g. These- computatiollll are all done by 

the toola of the next two sectiollll. 

. , -,', . . ' . 
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5_ Non-Standard Analysis and its Application to Map Extraction 

In this section we will discuss a very powerful tool for the advertised study oflhe production and 

analysis of maps in their power series representation. For our practical purposes, it will allow a very 

straightforward computation of derivatives and thua Taylor series expansions for very complicated 

functions of arbitrarily many variables to arbitrary order on a computer. It is based on a rigorous 

treatment of infinitely small quantities, differentials, and will allow the computation of derivatives 

from the difference quotient using differential differences. 

Contrary to the other existing methods for rigorous treatment of such differentials (see for 

instance references [a, 9]), our method is fully constructive and can be implemented on a computer. 

We start by defining a special collection of subsets of the real numbers, the collection of almost

finite sets:F. We call a set almost-finite, if for any real number r there are only finitely many 

elements of the set which are smaller than r . From this definition it is clear that all finite subsets 

of the real numbers are in:F. Furthermore, it is easy to convince oneself that each subset of the 

positive numbers is in:F. However, the set of all integers is not in :F, since there are infinitely many 

integers smaller than zero. 

It is easy to show that a subset of any set in :F is also in :F, and that with two sets their union 

and their intersection are in:F. Furthermore, with two sets M, N E :F the set M + N = {z + Ylz E 

M, yEN} is in :F, and there are only finitely many ways to write an element of M + N as a sum of 

two elements of M and N, respectively. Finally we note that each set in :F has a smallest element. 

We are now ready to define anew, very large set, which will turn out to be a generalization of 

the real numbers and also contain "infinitely small" numbers. We define 'R. to be the set of functions 

on the real numbers that are zero everywhere except on a set which is almost-finite, i.e. the set of 

non-zeroes of such functions belongs to :F. 

On 'R. we define an addition by just adding the functions. The resulting sum function is again 

in 'R. because the set of non-zeroes of the sum function is contained in the union of the non-zeroes 

of the functions to be summed, and is hence in :F according to the above reasoning. Hence the set 

'R. is closed under addition. 

We also define a multiplication in the following way. For two functions I, 9 E 'R. let N" Ng 

denote the set of non-zeroes. We define the product function 1 . 9 in the following way. In case 

z¢N, +N" we say (I·g)(z) =0. In case z E N,+N" we define (I · g)(z) in thefollowingw,,¥: 

(I. g)(z) = L: I(z,)· g(z,) (5.l) 
#/~.=· 

There are only finitely many terms in the sum because as stated above, there are only finitel, 

many ways to write an element of N, + N, as a sum of an element of N, and an element of N,. 

Since N/ + N, E F, we can infer that the product function I · 9 is again in 'It. 

It can be shown tJl'~ with this definition of an addition and a multiplication, the set 'R. becomes 

a field. Most of the properties of fields can be shown quite easily to be fulfiUed; the only exception 

is probably the existence of multiplicative inveraes. For details consult referencejlQ). We note tbat 

11 
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th .. neutral elenient of additionJa just tbe funetion identical to zero, and tbe neutral element of 

multiplication is tbe function which vanish .. everywbere except at : = 0 wbere it bas tbe value 1. 

On tbis new field we introduce an ordering relation in tbe following way. As customary for 

functions, we say 1 = g, if tbe two function. agree for all values of:. In case 1 #: g, we look at tbe 

smallest: wbere 1(:) #: g(:) and denote it by :of. . It exists since tbe set of: values wbere 1 and 9 

disagree is contained in N, UN, and is bence in :F and tbus bas a smallest value. We say now tbat 

I> 9 if I(:of.) > g(:of.) and 1 < 9 if I(:of.) < g(:of.) . 

It follow. tbat for arbitrary I, 9 we bave exactly one of tbe conditions 1 = g, 1 < 9 or 1 > g. 

Hence tbe set 'R. is well ordered. Furtbermore, one obtain. 1 < 9 ~ 1 + h < 9 + h, and 1 < g, h > 
o => 1 . h < 9 . h . 

After we have discussed the basie properties of this new set 'R., we owe the reader a justification 

for tbe introduction and usefuln ... of tbis new structure. First we note tbat tbe set of real numbers 

can be embedded into'R. by identifying tbe real number r witb tbe function which is zero everywbere 

except at zero wbere it takes tbe value r. Denoting tbis embedding map from tbe real numbers 

into 'R. by "-, we can easily verify tbat ,,-(: + y) = ,,-(:) + ,,-(y), lr(: . Y) = ,,-(:) . lr(Y) and tbat 

: < y => lr(:) < lr(Y). So lr preserv .. tbe field operation. + and . and tbe ordering <. 

Hence our new structure contains all the real numbers. However, it contains much more than 

the real numbers, especially infinitely small and infinitely large quantities as we will sbow now. First 

we denote witb d tbe element of 'R. which vanisbes everywbere except at 1 wbere it has tbe value 

1. By using tbe definition of tbe multiplication, we can convince ourselves tbat its multiplicative 

inverse d-' is the function that vanisbes everywhere except at -1 wbere it bas tbe value 1. Using 

our ordering relations, we can conclude that for every p08itive real number r we have the properties 

o < d < r , and d- l > r . Hence d lies between zero and any arbitrary positive real number and is 

thus "infinitely .mall". On the otber hand, d- l is " infinitely large" . Hence tbe number d is wbat 

pbysicists like to think of as a differential. 

As we will see, tbe field 'R. allows us indeed a fully rigorous treatment of infinitely small and 

infinitely large quantities and naturally allow. tbe introduction of deltafunctions. But most im

portantly for our purposes, it is belpful for tbe computation of derivatives and bence Taylor series 

expansions. We shall illustrate tbis with a little example. Consider tbe function 1(:) = :' + 2. 

Then obviously, its derivative at : = 2 is 4. Having infinitely small quantities at our disposal, it is 

natural to try to obtain tbe derivative as tbe difference quotient 

. ·c 

1(2 + d) - 1(:) 

• 
Using tbe aritbmetic on 'R. and in particular tbe field properties, we obtain 

1(2+ d) - 1(:) «2 + d)2 + 2) - 6 
d = d 

6+4d+d2--6=4+d 
« 

(5.2) 

(5.3) 

Thus we obtained' ibe exact value of the derivative, up to the infinitely small quantity d. If 
all we are interested in is the real derivative, _ are done bec:auae we simply bave to extract tbe 

Wreal partW from tbe reoult. So in a way we bave pushed numerical differentiation techniqu .. to the 
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extreme; usually the error in reprelellUng the derivative by a difference quotient becoma smaller 

aud omaller th .. smaller the valu .. of~. In our cu&, ~ became- infinitely small, and 00 did the 

error .. 

Using the extend&d real numbers, one can construct extend&d complex numb ... C in the usual 

way by introducing order&d pairs aud operations on them. AJJ it turns out, very mauy functions on the 

complex numbers can be generalized to the extend&d field 'R. in a natural manner. In particular, this 

holds for all analytic functiono. We shall sketch this and refer to reference [1O]for detailo. Suppose, 

I is analytic in a neighborhood of z. Then f can be expressed as a power series around z with 

a nonzero radius of convergence. It can be shown that this power series converges even for every 

element in C to an element of C once the argument lies within the radius of convergence. 

One of the most striking properties of such analytic functions on the extend&d complex numbers 

C shall be illustrated now. AJJ we know from basic Cauchy theory, every analytic function in a simply 

connect&d region in the plane is uniquely determined by its values along a closed curve completely 

inside the region, because then the Cauchy formula allows its computation everywhere as an integral. 

Hence, because of analyticity, the function needs to be given only on a certain "one-dimensional 

subset" of the region. For extensions of analytic functions into C it turns out that they are uniquely 

given by their value at one suitable point, namely Zo + d. This is true because of the existence of 

the power series: 

f(zo + d) = f(zo) + d· I'(zo) + d' . ryo) + ... (5.4) 

Evaluating I(zo+d) in C and noting that all the derivatives are complex, we obtain that I(zo+d) 

(as an element of C) vanishes everywhere except for positive integer powers of d and the values at 

these points are the derivatives (tin>es the factorials). 

So for practical purposes, it suffices to compute an analytic function at only one point to obtain 

complete information about it and especially all its derivatives. We also note that this procedure 

can be extended to power series of several variables, which is of in>portance for our computation of 

map expansions. 

In addition to the elementary operations addition and multiplication we introduce a "left shift" 

operation a that decreases all the non-zeroes :. by one and multiplies the values at the non-zeroes f. 
with the nonzero. It turno out that this operator is a " derivative" in that au· g) = (a f) . 9 + I· ({}g). 
With this derivative, we obtain a Differential Algebra in the sense of reference [11]. Furthermore.' if 
the f is a power series evaluated at the point Zo + d, the operation a transforms f into the derivative 

,of the power series evaluat&d at Zl) :t &. 

Using this "derivative" , we can compute Poioaon brackets and hence can do all the manipulatiOll 

of functiono of phase space required in our Lie A1,.bra;c treallDell\. 

Contrary to· the other methods to introduce Non-Standard Analysis ([8, 9D, here it is possible 

to in>plement the arithmetic on the computer. In order to do that every element is characterizeol 

by the values of non-~ :4 aud the correspondin& I. up to a certain depth of :.. Then tIM 
i::,:;:'" ~. ~peratiODII addition, multiplic:ation and "derivative" can 'be in>plemented follo..nn& the definitiono 4 

the operatiollL .. . 
" 

" 



IC th4t objecW'4t ia to compu~ only power aeries or fwlc:tioll& or one- variabl ... , Ihia ia eveIt. quit<t 

atraiptfonrard. The situaUon becomes mont difBcnlt, howe"n, in. th4t ...... of power oeri ... or many 

variables in which we are interested here. In this ta84t an efllcient implementaiioD or the mnlt.iplicaiioD 

r~a quite elaborate storing and retrieval technique. For details W4t refer to reference[5). 

'~ . , . 

: .' . " 
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8. Normal. Fo~ Procedurea.on a power Seriea· Map. 

A) A First Order Ca1culatio.., on the Lie Rep_tama. 

A4 mentioned in Eq.(2.4), the normal form procedweo transform the map g(.;. + 1) into a 

simpler- map N(B;. + 1) (dropping. from now on): 

(6 .1a) 

A = exp(: Fn:) .. . exp(: Fw) . . . exp(: Fo :) . (6.16) 

This factorization of A was fint used by Dragt and Finn in a modification of the Deprit normal 

form algorithm[12J( see also reference[3Jfor a good review of these various methods). We will also 

assume that N i. a product of a linear map 'R. and a nonlinear correction Nn: 

N = 'R.Nn. (6.2a) 

.Nn = exp(: To :) ... exp(: To:). (6.26) 

In a perturbative process carried order by order in the canonical variable x, the Lie polynomials Tw 

and F .. are of degree OJ + 2. The highest order 0 will be just No + 1 where No is the highest degree 

of the· power series of the projection functions II,. The map 'R. will be a genera1ized rotation and 

haa the following Lie operator. 

'R. = exp(: h :), 

N N 

h = L: - ~. (q~ + (e. -l.)p~) = L: f: 
1=1 .1:=1 

for stable motion in l:'h plane. 

for unstable motion in l:'h plane. 

(6.3a) 

(6.36) 

(6.3c) 

Essentially we assume that the linear part of g can be normafued and the result is hyperbolic 

or elliptic motion for all the planes (%p.). To give a flavour of the calculations, we now perform a 

first order determination of A on a map M of the fona: 

M = 'R.exp(: af :), (6.411} 

M e End(V); 'R. e End(V). (6.:tt 

Conmder a canonical transformation A wh ... purp.- is to modify M into a new factordeil 

rep ........ tation N defin-;;d to first order in a. Using a Lie rep_tation for A, _get for )( 

15 

.~ . 

J, ' ~.' 

,. 
,"" . 
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= ap(: OIF :)1tap(: 01' :)ap(: -OIF:) 

= ~ap(: 0I1t-1 F :)ap(: 01' :)ap(: -crF:) 

= 1tap (: a{-(£ -1t- I )F + f} + 0(012) :) 

(£ = identity map E End(V)) (6.5) 

Denoting by T the operator £ -1t- I , it is clear from Eq. (6.5) that one must study the range and 

the kernel of T in order to specify what possible linear terms in a can remain in Eq. (6.5). Suppose 

, is decomposed as follows: 

1=', + ,. ; ".l KerT (6.6) 

Then, we can select A or F such that N becomes ap(: OIl. +0(012) :) . The function F is just given 

by: 

F = T-
1
" . (6.7) 

From this short discussion one sees the central importance of the map 1t. The eigenvectors of 1t 
of unit eigenvalue will constitute the kernel K er T so critical to the inversion of T . In the case of 

Eq.(6 .3) the operators : ,~ : form a semi-simple algebra, we purposely neglect the case <. = l. = O. 

Its inclusion would complicate the discussion, since it is not true anymore that the vector space of 

polynomial functions is a direct sum of the range ImT and the kernel Ker T if the Lie Algebra of 

the : ,; : has a nilpotent component. We now find the range and the kernel of T by constructing a 

suitable eigenbasis for the study of 1t in the case described by Eq.(6.3). 

The evaluation of T-I" reqnires a decomposition of " in eigenvectors of : " : . These' 

eigenvectors are easy to obtain, the answer is given by: 

(6.8a) 

(6 .8b) 

. f. ·- 1'. h+h-
• 2 . - - T ••. (6.8e) 

Using this new b""is, we can easily find the kernel K er T . Let us define a new vector"" follows: 

(6.9~ 

Using the differential property of the operator : " :, we can compute· the eigenvalue of 1m, r4 

: 1.: Im,n) = (n- m)· .\Im,n/. (6·ItJt 

Aaoumin& that the .\o.n ... irrational and prime amonpt themselves, .we conclude tha 

Im,n) E KerT ==> n-m = O. (6.1~ 

111 
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. - .. ~. 

f 1 .... -.. . 

Providing that cine can easily change basis to the Im,n), the computation ofr-II. is trivial: 

I. = L Am,Alm, n) (6.120) 
m,A 

r-II. = L: (m'A ) Im,n). 
m,R 1 _ exp (m - n) . A 

(6.126) 

B) Conclusion: To Higher Order with the Differential Algebra Tools 

In reality, we have learned that one starts the normal form process on the representation of the 

map g(s; s + 1) on the projection functions IT; as given by their power series expansions obtained 

around the periodic orbit. Technically we do not have a Lie representation of the map. 

However, it should be plausible to the reader that we can perform a normalization procedure 

on the map to an arbitrary order if the following statements are true (of course they are!): 

1) The Differential Algebra software can take derivatives and integrals of polynomial functions. 

Hence it can extract all the Lie operators exp(: t. :) from a map whose power series represen

tation of the projection functions IT; is known to the (k - 1)th degree. Through Differential 

Algebra we can also multiply the coefficient of the monomials of a polynomial by an arbitrary 

function of the exponents of the monomials, allowing us to compute the effect of 7- 1 in 
Eq.(6.12) . 

2) The Differential Algebra software can compose functions represented by power series and 

therefore can perform the change of basis necessary for the production of N . In the IT; 

representation, it can compose maps to an arbitrary order avoiding the use of the Campbell

Baker-Hausdorff or the Zassenhaus formulae. 

Going into the details of these operations would too lengthy and the work can be found 

elsewhere [13]. These calculations are mathematically equivalent to a normalization process on the 

Hamiltonian H(t) . However by separating the map extraction process from the normalization algo

rithm we can perform the perturbative calculations exactly for the symplectic integrator used. 

--"" 
;~;h!~~!1£n~it,:?; .' 
~: 
• 
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r~ The- Floquet. Rep ..... entation and ito Hamiltonian-Free Description 

A) The- Old War- Normalizing the Hamiltonian 

We aaoume- that the Hamiltonian H(I) consists of an quasi-integrable part Ho(l) and a residual 

part V(I). In the standard approach, one attempts to normalized the Hamiltonian Ho using Eq.(2.3) 

Ko(l) = A(I) ( Ho(l) + iexp( : -w(I):) '::) , 

Ko(l) = Ko(J, I) , 

A(I + 1) = A(I) . 

(7.1a) 

(7.1b) 

(7 .1c) 

(7.1d) 

The motion produced by the new Hamiltonian Ko(l) will be a simple J -dependent rotation

expansion. Defining the action 'I in the usual manner, 

(7.2) 

we then get the usual tori for the motion of the resulting map N(.;. + I): 
.+1 

N(.; 8 +1) = exp( J : -KO(T) : dT) = exp(: -r(J; ., 8 +1) :j, (7.3a) 

• 
8 

'1(8+1) = '1(8)+ 8Jr(s,s+l) = '1(S)+~'1(8;8+1) . (7 .3b) 

In general the map g(8; 8 + I) which describes the motion of Ho(l) from. to 8 + 1 can be 

decompoeed into three facton: 

g(.;s+l) = A(S)-I N(,;s+l) A(.+I) . (7.4) 

As indicated by Eq.(7.4), a function is transformed into the Floquet space at location s by A(.)-I, 

then it is rotated into position. + 1 in the Floquet space where it is finally extracted by A(. + I) . 

The reader will notice that one regains Eq.(2.4) by letting 1 = 1. If we assume that the action of 

A-Ion the projection functions n. produces analytic functions (Le. expandable in power series 

.. hich are asymptotic at the very lean), then one can show the 

N(.;. + 1) = N(. +1,' +1 + I), for all t , 

and that: 

.~" N(.; s + 1) is the same for all choicea of A(s) (7.55) 

-The function r(.,.+ 1) asooci~ to the Lie operator ~C N(s;s+ 1) is a global invariant oCtbe Cull 

0)'8tem. 
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Finally we can write an exp(eS8ion for the full transformed Hamiltonian K(t) : 

K(t) = Ko(t) + A(W' V(t). (7.6) 

The freedom that we have in selecting A(t) is normally exploited in trying to modify V(t) as 

little as possible in Eq.(7.6). 

B) Conclusion on Hamiltonian Normalization 

Three things can be said about the procedure outlined in the previous section: 

1) The solution of Eq.(7 .6) requires solving for w (i.e A(t)) at every location around our complex 

system. Usually this is impractical for a complex system as we pointed out already. 

2) Extremely nonlinear perturbation such as V(t) are often localized in the variable t. Therefore 

only the maps between these locations are necessary. Hence the steps outlined in section (7.A) 

produce unnecessary information. In fact, if canonical integrators are used to represent Ho(t) 
as well as V(t), the map is better described by tools which do not assume any differentiability 

in the variable t. 

3) If, for whatever reason, one needs a normalized Hamiltonian which describes correctly the 

map from one localized perturbation to the next then there exists an infinite number of these 

Hamiltonians. Not surprisingly the exact Hamiltonian Ko(t) is one of them; but it is one of 

the most complicated choice. 

In the next section, we describe an approach ideal suited for studying a finite number oflocalized 

perturbations. Ultimately, as we pointed out in section 4, an integrator is best described as a finite 

product of maps. 

C) Floquet transformation on the Map 

To the extent that a symplectic integrator is a discontinuous set of operations (so is any inte

grator!), normalization of the Hamiltonian is not very suited to the study oCthe system produced by 

the integrator. In addition, as we just mentioned in section (7.B), this is even more so if a localized 

perturbation is added. 

In this last section, we will develop an approach to the study of a full periodic system based 011 

the maps alone [14,15]. We will therefore assume the existence oC a map a(o; 8 + t) known at Cew 

locations where we intend to perturb our system. For complete generality, we need only to consic1er 

two locations ., and '2 as pictured on Fig.!. First, we assume the existence oC the maps A(oi): 

There exists Ai such that J.f = A/,aiA, (7.70-) 

J.f = exp(- : r(J) :) ; g, = a(0 .. 8, + 1). (7.7ij 

As we said earlier;-the uniquenesa oC J.f is guaranteed by the good behaviour of the power seri.,. 

oC (AIli)(X) near the origin_ In the perturbation theoQ. oC section 5, thie is implicitly assumed if 

the power series is to have any sense at aIL 

Ii 
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To proceed" fimher, we write lit in terms of g. and use the integrability relation of Eq.(7.7) 
twice, 

(7.80) 

(7.8b) 

(7.8c) 

Finally, using the Lie representation of II: 

(7.90) 

11= exp(- : r(8('I,B.)J) : ). (7.9b) 

(7.9c) 

From Eq.(7 .9b) we conclude that 8 must leave J invariant. Hence it must have the form: 

(7.10) 

The function r(J; Bl, s.) is identical to its Hamiltonian counterpart of Eq.(7.3). 

Something mnst be said about the choice of A; : technically the only constraint is that A; must 

be uniquely defined for each position B; in order to insure periodicity. In addition, we often restrict 

ouraelv"," to AI 's which are internally defined; by this we mean that our construction method is 

an injection from the set of possible g(S;,B; + 1) (finite set for an integrator) to the infinite set 

of poosible A;. This insures tbat tbe pbase advance between two "matched" locations is tbe same 

for all possible injective construction (Matched locations bave the same one turn map g). Again 

bowever, the nature of tbe perturbation added to tbe map will dictate tbe choice of A. 

Finally, we add two localized perturbations at positions 'I and B., given by tbeir Lie operators 
: VI : and : V. : respectively. The new maps g.o •• ,( 01, BI + 1) and 11'01·'(01, BI + 1) are just: 

(7.11a) 

(7.116) 

The various factors of lI'otal ('1, '1 + 1) ha~e a simple interpretation. The filst two factors represent 

the perturbations Vi and V •. One notices tbat each perturbation is modified by two maps: firstly, 

&I we mentioned, the Lie operator is brou&ht into the Floquet representation by A; secondly the 

operator haa its phaae. adVUlced by tbe appropriate amount by the map 8('1, B~. The thir4 

factor is the unperturb~ Floq~et map II. One might vi ... the fnll action of 11'0'4'1"1 + 1) oa 

an arbitrary function I &I follows: first f is distorted into a new funetion by the perturbations an. 

then it is transformed by tbe orislnal map JL 
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Aa. we .aid' e-""lier, i\ is oomdimm. useful to produ~ a Hamiltoni.,. which deecribe. the map 

N'otal(.,.,0, + 1) for (i = 1,2). or eo ....... , \heexact Hamiltoni .... H(t) doe&~ fonll poeeible 6: 

H(t) = Ho(t) + L: 6,(. -o,)~, (7.12a) 
.=1,2 

. 6,(0) = 6,(0 + m) ; m = in\eger. (7.126) 

However, this defeats the purpoee of using maps. Indeed we assumed \ha\ the map is known only 

between a\ and a,. Never\heless i\ is easy \0 write a infini\e number of Hamiltonians which reproduce 

the mo\ion of N'0'" (a" a, + 1) for (i = 1, 2): 

K.(t) = I«J, t) + I: 6,(. - .,)A, ~ , (7.13a) 
i=1,2 

.. 
where I< is such \hat: J I«J,t) cit = r(J,aloa,) 

" 
'1+1 

and J I«J,t) cit = r(J,aloa. + 1). (7.136) 

" 
The Hamiltonians of Eq.(7.13) bave \he proper phase advance 8 between the the points " 

and ., and \he correct A at \h ..... locauons. The. function. 1< , can be chooen to be very simple (or 

extremely eomplex). 
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